The Science Behind Making Buildings Comfortably Non-Combustible

Although the most fire-resistant building is likely a windowless, concrete bunker, this tends to be not the vibe that most home owners go for. This is why over the years construction of buildings in areas prone to bush- and wildfires – i.e. an uncontrolled fire in an area with combustible vegetation – has adapted to find a happy medium between a building that you’d enjoy living in and a building that will not instantly combust the moment an ember from a nearby wildfire gently touches down upon any part of it.

To achieve this feat, the primary means include keeping said combustible vegetation and similar away from the building, and to make the house as resistant to ember attacks as possible. That this approach is effective has been demonstrated over the course of multiple wildfires in California during the past years, whereby houses constructed more recently with these features had a much higher chance of making it through the event unscathed.

Naturally, the devil is in the details, which is why for example the Australian standard for construction in bushfire-prone areas (AS 3959, last updated in 2018, 2009 version PDF) is rather extensive and heavy on details, including multiple Bushfire Attack Level (BAL) ratings that define risk areas and legally required mitigation measures. So what does it take exactly to survive a firestorm bearing down on your abode?

Continue reading “The Science Behind Making Buildings Comfortably Non-Combustible”

How Magnetic Fonts Twisted Up Numbers And Saved Banking Forever

If you’ve ever looked at the bottom of a bank check, you probably glanced over some strangely formed numbers? If you’re a fan of science fiction or retro computers, you’ve probably spotted the same figures on any number of books from the 1980s. They’re mostly readable, but they’re chunky and thin in places you don’t expect.

Those oddball numerals didn’t come from just anywhere—they were a very carefully crafted invention to speed processing in the banking system. These special fonts were created to be readable both by humans and machines—us with our eyes, and the computers with magnetic sensors. Let’s explore the enigmatic characters built for Magnetic Ink Character Recognition (MICR). Continue reading “How Magnetic Fonts Twisted Up Numbers And Saved Banking Forever”

How Do We Deal With Microplastics In The Ocean?

Like the lead paint and asbestos of decades past, microplastics are the new awful contaminant that we really ought to do something about. They’re particularly abundant in the aquatic environment, and that’s not a good thing. While we’ve all seen heartbreaking photos of beaches strewn with water bottles and fishing nets, it’s the invisible threat that keeps environmentalists up at night. We’re talking about microplastics – those tiny fragments that are quietly infiltrating every corner of our oceans.

We’ve dumped billions of tons of plastic waste into our environment, and all that waste breaks down into increasingly smaller particles that never truly disappear. Now, scientists are turning to an unexpected solution to clean up this pollution with the aid of seashells and plants.

Continue reading “How Do We Deal With Microplastics In The Ocean?”

What Happens If You Die In Space?

There are no two ways about it—space will kill you if you give it half a chance. More than land, sea, or air, the space environment is entirely hostile to human existence. Precision-engineered craft are the bare minimum just to ensure human survival. Even still, between the vacuum, radiation, micrometeorites, and equipment failures, there are plenty of ways for things to go catastrophically wrong beyond Earth’s atmosphere.

Despite the hazards, most spacefaring humans have completed their missions without injury. However, as we look to return to the Moon, tread on Mars, and beyond, it’s increasingly likely that future astronauts could pass away during longer missions. When that inevitably happens, the question is simple—how do you deal with death in space?

Continue reading “What Happens If You Die In Space?”

A Closer Look At The Tanmatsu

A few weeks ago we brought you news of a new palmtop computer for hackers, powered by the new Espressif ESP32-P4 application processor. The Tanmatsu (Japanese for “Terminal”) is a compact handheld device with a QWERTY keyboard and an 800×480 DSI display, and while it currently exists at the final prototype stage there is a pre-order page upon which you can reserve an early production model for yourself. We’ve been lucky enough to be invited to give one a close-up inspection, so it was time to hot-foot it on the train to a Dutch hackerspace in order to bring you a preview.

A Little History, And First Impressions

The Tanmatsu, held in both hands.
Recesses in the case fit well against the hands.

Before looking at the device, it’s time for a little history. The Tanmatsu has its origin in badge.team, the Netherlands-based group that has produced so many European event badges over the years, and it was destined to eventually become the badge for the upcoming WHY2025 hacker camp. As sometimes happens in any community there has been a significant difference of opinion between the event orga and the badge.team folks that it’s inappropriate to go into here, so now it exists as a standalone project. It’s destined to be open-source in its entirety including hardware and software (and we will hold them to that, never fear), but because of the events surrounding its conception the full repositories will be not be made public until some time late in the summer.

Picking the Tanmatsu up and holding it, it’s a rectangular slab a bit larger and thicker than a CD case with that QWERTY keyboard and display on its front face, an array of ports including an SMA socket for a LoRA antenna on its sides, and an expansion connector on its rear. It has a sandwich construction, with a PCB front face, a 3D printed spacer, the PCB itself, and a 3D printed back cover all held together with a set of screws. The recesses on its bottom edge and the lower halves of the sides locate neatly with fingers and thumbs when it’s held in two hands for two-thumb typing. The keyboard is a silicone moulding as is common on this type of device, and while the keys are quite small it was not difficult to type on it. The display meanwhile feels of much higher quality than the SPI parts previously seen on badges. Continue reading “A Closer Look At The Tanmatsu”

USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin

The Universal Serial Bus. The one bus to rule them all.  It brought peace and stability to the world of computer peripherals. No more would Apple and PC users have to buy their own special keyboards, mice, and printers. No more would computers sprout different ports for different types of hardware. USB was fast enough and good enough for just about everything you’d ever want to plug in to a computer.

We mostly think of USB devices as being plug-and-play; that you can just hook them up and they’ll work as intended. Fiddle around around with some edge cases, though, and you might quickly learn that’s not the case. That’s just what I found when I started running complicated livestreams from a laptop…

Continue reading “USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin”

Digital Paint Mixing Has Been Greatly Improved With 1930s Math

You might not have noticed if you’re not a digital artist, but most painting and image apps still get color mixing wrong. As we all learned in kindergarten, blue paint and yellow paint makes green paint. Try doing that in Photoshop, and you’ll get something altogether different—a vague, uninspiring brownish-grey. It’s the same story in just about every graphics package out there.

As it turns out, there’s a good reason the big art apps haven’t tackled this—because it’s really hard! However, a team of researchers at Czech Technical University has finally cracked this long-standing problem. The result of their hard work is Mixbox, a digital model for pigment-based color mixing. Once again, creative application of mathematics has netted aesthetically beautiful results!

Continue reading “Digital Paint Mixing Has Been Greatly Improved With 1930s Math”