Harvesting Water With High Voltage

Atmospheric water harvesting is a way to obtain fresh water in arid regions, as there is always some moisture in the air, especially in the form of morning fog. The trick lies in capturing this moisture as efficiently as possible, with a range of methods available that start at ancient low-tech methods involving passive fog droplet capture all the way to variants of what are effectively large dehumidifiers.

A less common way involves high-voltage and found itself the subject of a recent Plasma Channel video on YouTube. The inspiration for the build was a 2018 paper by [Maher Damak] et al. (PDF) titled Electrostatically driven fog collection using space charge injection.

One of the two stakes that make up the electrostatic precipitator system for atmospheric water harvesting. (Credit: Plasma Channel, YouTube)
One of the two stakes that make up the electrostatic precipitator system for atmospheric water harvesting. (Credit: Plasma Channel, YouTube)

Rather than passively waiting for dew to collect on the collector, as with many of the methods detailed in this review article by [Xiaoyi Liu] et al., this electrostatic approach pretty much does what it says on the tin. It follows the principle of electrostatic precipitators with a high-voltage emitter electrode to ionize the air and grounded collector wires. In the video a small-scale version (see top image) was first constructed, demonstrating the effectiveness. Whereas the passive grid collected virtually none of the fog from an ultrasonic fog maker, with 35 kV applied the difference was night and day. No water was collected with the first test, but with power applied a significant 40 mL was collected in 5 minutes on the small mesh.

With this scale test complete, a larger version could be designed and tested. This simplifies the emitter to a single wire connected between two stakes, one of which contains the 20 kV HV generator and battery. The mesh is placed right below it and grounded (see image). With an extreme fog test inside a terrarium, it showed a very strong effect, resulting in a harvest of 14 mL/Wh for this prototype. With a larger scale version in a real-life environment (i.e. desert) planned, it’ll be interesting to see whether this method holds up in a more realistic scenario.

Continue reading “Harvesting Water With High Voltage”

Old IPad To New Screen

Turning surplus LCD panels into stand-alone monitors with the help of a driver board is an established hack, and a search of eBay or AliExpress will turn up boards for almost any widely available panel. [Drygol] has a couple of old iPad screens, and has done exactly this with them. What makes these two projects stand aside from the crowd is their attention to detail, instead of creating a hacky monitor this is almost something you might buy as a product.

For a start, both screens sit in very smart 3D printed cases. Behind them is the LCD driver, and perhaps this is where many people might leave it. But the point of an iPad is portability, so the first one receives a suitably large lithium polymer battery and its associated electronics. As such a thing is of limited use without a battery level monitor, so one is mounted flush with the case on the outside. The final touch is a Bluetooth audio board and speaker, making an all-in-one peripheral we’d be happy to carry with us.

The second screen is a slimmer version of the first case, with a different board that has an onboard audio channel. It’s mounted in a stand with a MiSter FPGA emulator, for a very neat and compact desktop set-up.

This project shows what can be done with these screens, and raises the bar. All the files are included, so it should be possible to make your own. We expect someone might stick a Raspberry Pi in there, to make… something like an iPad.

This isn’t the first time we’ve seen an iPad screen mod.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With All The Green Keyboards

Okay, you have to see the gallery to appreciate it, but this keyboard was designed to resemble a red cedar tree with the green shell and wood bottom and the copper PCB showing through the tree cutouts on the sides.

A lovely green split keyboard with PlayStation buttons.
Image by [WesternRedCdar] via reddit
But you know why I chose this picture — those PS2 buttons. According to [WesternRedCdar] they are just for fun, although they do allow for pressing Ctrl and Alt at the same time with a single thumb.

Oh, and are those Nintendo Switch joysticks above the PS2 buttons? Those are for the mouse and vertical/horizontal scrolling. Honestly, this seems like a great amount of thumb controls. The basics are there (presumably), and there isn’t any thumb-extending excess, like keys on the insides by the mouse.

This bad mama jama runs on an RP2040 and has 50 hand-wired Cherry Brown switches plus the PS2 buttons. In the build guide, you can read all about [WesternRedCdar]’s troubles with integrating those. The Nintendo Switch joysticks weren’t terribly easy, either, since the ribbon connector can’t be soldered directly.

The final issue was one of weight. Since many of the switches stand quite tall, it sort of jostles the keyboard to actuate them. [WesternRedCdar] opined that that the ideal solution would have been to use metal base plates instead of wood, but took care of the issue by adding layers of 1/8″ steel flat bar inside the case.

Continue reading “Keebin’ With Kristina: The One With All The Green Keyboards”

Line Power With No Transformer

Normally, when you want a low DC voltage from the AC line, you think about using a transformer of some kind. [RCD66] noticed that an AC monitor meter must have some sort of power supply but had no transformers in sight. That led to an exploration of how those work and how you can use them, too. You can watch the work in the video below.

Sensibly, there is a transformer in the test setup — an isolation transformer to make it safe to probe the circuit. But there’s no transformer providing voltage changes. Isolation is important even if you are taking apart something commercial that might be trasformerless.

The circuit is simple enough: it uses a capacitor, a resistor, and a pair of diodes (one of them a zener diode). He uses this basic circuit to drive simple regulators with input and output filter capacitors. We’ve seen many variations on this design over the years.

You can’t draw a lot of power through this arrangement. But sometimes it is all you need. However, this is pretty dangerous, as we’ve discussed before. Be sure you understand exactly what the risks are before you decide to build something like this.

Continue reading “Line Power With No Transformer”

The Importance Of Current Balancing With Multi-Wire Power Inputs

In an ideal world, devoid of pesky details like contact resistance and manufacturing imperfections, you would be able to double the current that can be provided to a device by doubling the number of conductors without altering the device’s circuitry, as each conductor would carry the exact same amount of current as its neighbors. Since we do not actually live inside a simplified physics question’s scenario, multi-wire powering of devices comes with a range of headaches, succinctly summarized in the well-known rule that electricity always seeks the path of least resistance.

As recently shown by NVidia with their newly released RTX 50-series graphics cards, failure to provide current balancing between said different conductors will quickly turn it into a practical physics demonstration of this rule. Initially pinned down as an issue with the new-ish 12VHPWR connector that was supposed to replace the 6-pin and 8-pin PCIe power connectors, it turns out that a lack of current balancing is plaguing NVidia GPUs, with predictably melty results when combined with low safety margins.

So what exactly changed that caused what seems to be a new problem, and why do you want multi-wire, multi-phase current balancing in your life when pumping hundreds of watts through copper wiring inside your PC?

Continue reading “The Importance Of Current Balancing With Multi-Wire Power Inputs”

Where No E. Coli Has Gone Before

While we’re still waiting for ET to give us a ring, many worlds might not have life that’s discovered the joys of radio yet. Scientists ran a two-pronged study to see how bacteria might fare on other worlds.

We currently define the Habitable Zone (HZ) of a planet by the likelihood that particular planet can host liquid water due to its peculiar blend of atmosphere and distance from its star. While this doesn’t guarantee the presence of life, its a good first place to start. Trying to expand on this, the scientists used a climate model to refine the boundaries of the HZ for atmosphere’s dominated by H2 and COgases.

Continue reading “Where No E. Coli Has Gone Before”

Unhacked Mattress Phones Home

[Dylan] has a fancy bed that can be set to any temperature. Apparently this set him back about $2,000, it only works if it has Internet, and the bed wants $19 a month for anything beyond basic features. Unsurprisingly, [Dylan] decided to try to hack the mattress firmware and share what he learned with us.

Oddly enough, it was easy to just ask the update URL for the firmware and download it. Inside, it turned out there was a mechanism for “eng@eightsleep.com” to remotely SSH into any bed and — well — do just about anything. You may wonder why anyone wants to gain control of your bed. But if you are on the network, this could be a perfect place to launch an attack on the network and beyond.

Of course, they can also figure out when you sleep, if you sleep alone or not, and, of course, when no one is in the bed. But if those things bother you, maybe don’t get an Internet-connected bed.

Oddly enough, the last time we saw a bed hack, it was from [Dillan], not [Dylan]. Just because you don’t want Big Sleep to know when you are in bed doesn’t mean it isn’t useful for your private purposes.