Tech In Plain Sight: Magsafe, And How To Roll Your Own

Apple likes magnets. They started out with magnetic laptop chargers and then graduated to a system that magnetically holds the phone, charges it, and can facilitate communication between the phone and a charger or other device. Even if you are like me and have no Apple devices, you can retrofit other phones to use Magsafe accessories. In fact, with a little work, you can build your own devices. Regardless, the technology is a clever and simple hack, and we are just a little sorry we didn’t think of it.

Terms

Using a magnet to attach a phone isn’t a new idea. But, historically, the phone had either a metal back or an adhesive metal plate attached that would stick to the magnet. This wouldn’t necessarily help with charging, but was perfectly fine for holding the device. The problem is, it is hard to wirelessly charge the phone through the metal.

Magsafe can do several different things. Obviously, it can attach the phone magnetically. However, since it is a ring shape, you can still have a charging coil in the middle of the ring. Better still, the Magsafe system will align the phone and charger with a satisfying click when you put them together.

Continue reading “Tech In Plain Sight: Magsafe, And How To Roll Your Own”

The Importance Of Current Balancing With Multi-Wire Power Inputs

In an ideal world, devoid of pesky details like contact resistance and manufacturing imperfections, you would be able to double the current that can be provided to a device by doubling the number of conductors without altering the device’s circuitry, as each conductor would carry the exact same amount of current as its neighbors. Since we do not actually live inside a simplified physics question’s scenario, multi-wire powering of devices comes with a range of headaches, succinctly summarized in the well-known rule that electricity always seeks the path of least resistance.

As recently shown by NVidia with their newly released RTX 50-series graphics cards, failure to provide current balancing between said different conductors will quickly turn it into a practical physics demonstration of this rule. Initially pinned down as an issue with the new-ish 12VHPWR connector that was supposed to replace the 6-pin and 8-pin PCIe power connectors, it turns out that a lack of current balancing is plaguing NVidia GPUs, with predictably melty results when combined with low safety margins.

So what exactly changed that caused what seems to be a new problem, and why do you want multi-wire, multi-phase current balancing in your life when pumping hundreds of watts through copper wiring inside your PC?

Continue reading “The Importance Of Current Balancing With Multi-Wire Power Inputs”

DataSaab mainframe

DataSaab: Sweden’s Lesser-Known History In Computing

Did you know that the land of flat-pack furniture and Saab automobiles played a serious role in the development of minicomputers, the forerunners of our home computers? If not, read on for a bit of history. You can also go ahead and watch the video below, which tells it all with a ton of dug up visuals.

Sweden’s early computer development was marked by significant milestones, beginning with the relay-based Binär Aritmetisk Relä-Kalkylator (BARK) in 1950, followed by the vacuum tube-based Binär Elektronisk SekvensKalkylator (BESK) in 1953. These projects were spearheaded by the Swedish Board for Computing Machinery (Matematikmaskinnämnden), established in 1948 to advance the nation’s computing capabilities.

In 1954, Saab ventured into computing by obtaining a license to replicate BESK, resulting in the creation of Saab’s räkneautomat (SARA). This initiative aimed to support complex calculations for the Saab 37 Viggen jet fighter. Building on this foundation, Saab’s computer division, later known as Datasaab, developed the D2 in 1960 – a transistorized prototype intended for aircraft navigation. The D2’s success led to the CK37 navigational computer, which was integrated into the Viggen aircraft in 1971.

Datasaab also expanded into the commercial sector with the D21 in 1962, producing approximately 30 units for various international clients. Subsequent models, including the D22, D220, D23, D5, D15, and D16, were developed to meet diverse computing needs. In 1971, Datasaab’s technologies merged with Standard Radio & Telefon AB (SRT) to form Stansaab AS, focusing on real-time data systems for commercial and aviation applications. This entity eventually evolved into Datasaab AB in 1978, which was later acquired by Ericsson in 1981, becoming part of Ericsson Information Systems.

Parallel to these developments, Åtvidabergs Industrier AB (later Facit) produced the FACIT EDB in 1957, based on BESK’s design. This marked Sweden’s first fully domestically produced computer, with improvements such as expanded magnetic-core memory and advanced magnetic tape storage. The FACIT EDB was utilized for various applications, including meteorological calculations and other scientific computations. For a short time, Saab even partnered with the American Unisys called Saab-Univac – a well-known name in computer history.

These pioneering efforts by Swedish organizations laid the groundwork for the country’s advancements in computing technology, influencing both military and commercial sectors. The video below has lots and lots more to unpack and goes into greater detail on collaborations and (missed) deals with great names in history.

Continue reading “DataSaab: Sweden’s Lesser-Known History In Computing”

The “Unbreakable” Beer Glasses Of East Germany

We like drinking out of glass. In many ways, it’s an ideal material for the job. It’s hard-wearing, and inert in most respects. It doesn’t interact with the beverages you put in it, and it’s easy to clean. The only problem is that it’s rather easy to break. Despite its major weakness, glass still reigns supreme over plastic and metal alternatives.

But what if you could make glassware that didn’t break? Surely, that would be a supreme product that would quickly take over the entire market. As it turns out, an East German glassworks developed just that. Only, the product didn’t survive, and we lumber on with easily-shattered glasses to this day. This is the story of Superfest.

Continue reading “The “Unbreakable” Beer Glasses Of East Germany”

You Know This Font, But You Don’t Really Know It

Typography enthusiasts reach a point at which they can recognise a font after seeing only a few letters in the wild, and usually identify its close family if not the font itself. It’s unusual then for a font to leave them completely stumped, but that’s where [Marcin Wichary] found himself. He noticed a font which many of you will also have seen, on typewriter and older terminal keys. It has a few unusual features that run contrary to normal font design such as slightly odd-shaped letters and a constant width line, and once he started looking, it appeared everywhere. Finding its origin led back well over a century, and led him to places as diverse as New York street furniture and NASA elevators.

The font in question is called Gorton, and it came from the Gorton Machine Co, a Wisconsin manufacturer. It’s a font designed for a mechanical router, which is why it appears on so much custom signage and utilitarian components such as keyboard keys. Surprisingly its history leads back into the 19th century, predating many of the much more well-know sans serif fonts. So keep an eye out for it on your retro tech, and you’ll find that you’ve seen a lot more of it than you ever knew. If you are a fellow font-head, you might also know the Hershey Font, and we just ran a piece on the magnetic check fonts last week.

Thanks [Martina] for the tip!

Understanding The Miller Effect

As electronics rely more and more on ICs, subtle details about discrete components get lost because we spend less time designing with them. For example, a relay seems like a simple component, but selecting the contact material optimally has a lot of nuance that people often forget. Another case of this is the Miller effect, explained in a recent video by the aptly named [Old Hack EE].

Put simply, the Miller effect — found in 1919 by [John Milton Miller] — is the change in input impedance of an inverting amplifier due to the gain’s effect on the parasitic capacitance between the amplifier’s input and output terminals. The parasitic capacitance acts like there is an additional capacitor in parallel with the parasitic capacitance that is equivalent to the parasitic capacitance multiplied by the gain. Since capacitors in parallel add, the equation for the Miller capacitance is C-AC where C is the parasitic capacitance, and A is the voltage gain which is always negative, so you might prefer to think of this as C+|A|C.

Continue reading “Understanding The Miller Effect”

NASA Taps Webb To Help Study 2032 Asteroid Threat

In all likelihood, asteroid 2024 YR4 will slip silently past the Earth. Based on the data we have so far, there’s an estimated chance of only 2.1% to 2.3% that it will collide with the planet on December 22nd, 2032. Under normal circumstances, if somebody told you there was a roughly 98% chance of something not happening, you probably wouldn’t give it a second thought. There’s certainly a case to be made that you should feel that way in regards to this particular event — frankly, it’s a lot more likely that some other terrible thing is going to happen to you in the next eight years than it is an asteroid is going to ruin your Christmas party.

That being said, when you consider the scale of the cosmos, a 2+% chance of getting hit is enough to raise some eyebrows. After all, it’s the highest likelihood of an asteroid impact that we’re currently aware of. It’s also troubling that the number has only gone up as further observations of 2024 YR4’s orbit have been made; a few weeks ago, the impact probability was just 1%. Accordingly, NASA has recently announced they’ll be making time in the James Webb Space Telescope’s busy scientific schedule to observe the asteroid next month.

So keeping in mind that we’re still talking about an event that’s statistically unlikely to actually occur, let’s take a look at what we know about 2024 YR4, and how further study and analysis can give us a better idea of what kind of threat we’re dealing with.

Continue reading “NASA Taps Webb To Help Study 2032 Asteroid Threat”